Use for \n
[gnuk/gnuk.git] / src / sha512.c
1 /*
2  * sha512.c -- Compute SHA-512 hash (for little endian architecture).
3  *
4  * This module is written by gniibe, following the API of sha256.c. 
5  *
6  * Copyright (C) 2014 Free Software Initiative of Japan
7  * Author: NIIBE Yutaka <gniibe@fsij.org>
8  *
9  * This file is a part of Gnuk, a GnuPG USB Token implementation.
10  *
11  * Gnuk is free software: you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 3 of the License, or
14  * (at your option) any later version.
15  *
16  * Gnuk is distributed in the hope that it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
19  * License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  */
25
26 /*
27  * Reference:
28  *
29  * [1] FIPS PUB 180-4: Secure hash Standard (SHS), March, 2012.
30  *
31  */
32
33 #include <string.h>
34 #include <stdint.h>
35 #include <stdlib.h>
36 #include "sha512.h"
37
38 #define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
39
40 static void memcpy_output_bswap64 (unsigned char dst[64], const uint64_t *p)
41 {
42   int i;
43   uint64_t q = 0;
44
45   for (i = 0; i < 64; i++)
46     {
47       if ((i & 7) == 0)
48         q = __builtin_bswap64 (p[i >> 3]); /* bswap64 is GCC extention */
49       dst[i] = q >> ((i & 7) * 8);
50     }
51 }
52
53 #define rotr64(x,n)   (((x) >> n) | ((x) << (64 - n)))
54
55 #define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
56 #define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))
57
58 /* round transforms for SHA512 compression functions */
59 #define vf(n,i) v[(n - i) & 7]
60
61 #define hf(i) (p[i & 15] += \
62     g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
63
64 #define v_cycle0(i)                                 \
65     p[i] = __builtin_bswap64 (p[i]);                \
66     vf(7,i) += p[i] + k_0[i]                        \
67     + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i));   \
68     vf(3,i) += vf(7,i);                             \
69     vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
70
71 #define v_cycle(i, j)                               \
72     vf(7,i) += hf(i) + k_0[i+j]                     \
73     + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i));   \
74     vf(3,i) += vf(7,i);                             \
75     vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
76
77 #define s_0(x)  (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
78 #define s_1(x)  (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
79 #define g_0(x)  (rotr64((x),  1) ^ rotr64((x),  8) ^ ((x) >>  7))
80 #define g_1(x)  (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >>  6))
81 #define k_0     k512
82
83 /* Taken from section 4.2.3 of [1].  */
84 static const uint64_t k512[80] = {
85 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
86 0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
87 0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
88 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694,
89 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
90 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
91 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
92 0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70,
93 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
94 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b,
95 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30,
96 0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
97 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
98 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
99 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
100 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
101 0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
102 0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
103 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
104 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
105 };
106
107 void
108 sha512_process (sha512_context *ctx)
109 {
110   uint32_t i;
111   uint64_t *p = ctx->wbuf;
112   uint64_t v[8];
113
114   memcpy (v, ctx->state, 8 * sizeof (uint64_t));
115
116   v_cycle0 ( 0); v_cycle0 ( 1); v_cycle0 ( 2); v_cycle0 ( 3);
117   v_cycle0 ( 4); v_cycle0 ( 5); v_cycle0 ( 6); v_cycle0 ( 7);
118   v_cycle0 ( 8); v_cycle0 ( 9); v_cycle0 (10); v_cycle0 (11);
119   v_cycle0 (12); v_cycle0 (13); v_cycle0 (14); v_cycle0 (15);
120
121   for (i = 16; i < 80; i += 16)
122     {
123       v_cycle ( 0, i); v_cycle ( 1, i); v_cycle ( 2, i); v_cycle ( 3, i);
124       v_cycle ( 4, i); v_cycle ( 5, i); v_cycle ( 6, i); v_cycle ( 7, i);
125       v_cycle ( 8, i); v_cycle ( 9, i); v_cycle (10, i); v_cycle (11, i);
126       v_cycle (12, i); v_cycle (13, i); v_cycle (14, i); v_cycle (15, i);
127     }
128
129   ctx->state[0] += v[0];
130   ctx->state[1] += v[1];
131   ctx->state[2] += v[2];
132   ctx->state[3] += v[3];
133   ctx->state[4] += v[4];
134   ctx->state[5] += v[5];
135   ctx->state[6] += v[6];
136   ctx->state[7] += v[7];
137 }
138
139 void
140 sha512_update (sha512_context *ctx, const unsigned char *input,
141                unsigned int ilen)
142 {
143   uint32_t left = (ctx->total[0] & SHA512_MASK);
144   uint32_t fill = SHA512_BLOCK_SIZE - left;
145
146   ctx->total[0] += ilen;
147   if (ctx->total[0] < ilen)
148     ctx->total[1]++;
149
150   while (ilen >= fill)
151     {
152       memcpy (((unsigned char*)ctx->wbuf) + left, input, fill);
153       sha512_process (ctx);
154       input += fill;
155       ilen -= fill;
156       left = 0;
157       fill = SHA512_BLOCK_SIZE;
158     }
159
160   memcpy (((unsigned char*)ctx->wbuf) + left, input, ilen);
161 }
162
163 void
164 sha512_finish (sha512_context *ctx, unsigned char output[64])
165 {
166   uint32_t last = (ctx->total[0] & SHA512_MASK);
167
168   ctx->wbuf[last >> 3] = __builtin_bswap64 (ctx->wbuf[last >> 3]);
169   ctx->wbuf[last >> 3] &= 0xffffffffffffff80LL << (8 * (~last & 7));
170   ctx->wbuf[last >> 3] |= 0x0000000000000080LL << (8 * (~last & 7));
171   ctx->wbuf[last >> 3] = __builtin_bswap64 (ctx->wbuf[last >> 3]);
172
173   if (last > SHA512_BLOCK_SIZE - 17)
174     {
175       if (last < 120)
176         ctx->wbuf[15] = 0;
177       sha512_process (ctx);
178       last = 0;
179     }
180   else
181     last = (last >> 3) + 1;
182
183   while (last < 14)
184     ctx->wbuf[last++] = 0;
185
186   ctx->wbuf[14] = __builtin_bswap64 ((ctx->total[0] >> 61) | (ctx->total[1] << 3));
187   ctx->wbuf[15] = __builtin_bswap64 (ctx->total[0] << 3);
188   sha512_process (ctx);
189
190   memcpy_output_bswap64 (output, ctx->state);
191   memset (ctx, 0, sizeof (sha512_context));
192 }
193
194 /* Taken from section 5.3.5 of [1].  */
195 static const uint64_t initial_state[8] = {
196 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
197 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179
198 };
199
200 void
201 sha512_start (sha512_context *ctx)
202 {
203   ctx->total[0] = ctx->total[1] = 0;
204   memcpy (ctx->state, initial_state, 8 * sizeof(uint64_t));
205 }
206
207 void
208 sha512 (const unsigned char *input, unsigned int ilen,
209         unsigned char output[64])
210 {
211   sha512_context ctx;
212
213   sha512_start (&ctx);
214   sha512_update (&ctx, input, ilen);
215   sha512_finish (&ctx, output);
216 }